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Natural Boundaries for Area-Preserving 
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We consider KAM invariant curves for generalizations of the standard map of 
the form (x', y ' )= (x + y', y + ef(x)), where f ( x )  is an odd trigonometric poly- 
nomial. We study numerically their analytic properties by a Pad6 approximant 
method applied to the function which conjugates the dynamics to a rotation 
0 ~-* 0 + r In the complex e plane, natural boundaries of different shapes are 
found. In the complex 0 plane the analyticity region appears to be a strip 
bounded by a natural boundary, whose width tends linearly to 0 as e tends to 
the critical value. 

KEY WORDS: Conservative dynamical systems; KAM theory; natural 
boundaries; Pad6 approximants. 

1. INTRODUCTION 

The purpose of this paper is to continue and extend the analysis, started in 
refs. 1 and 2, of the complex analytic properties of invariant curves for 
area-preserving twist diffeomorphisms (for a review, see, e.g., refs. 3 and 4). 

We consider the following class of area-preserving twist maps F+: 
(x, y) ~ (x', y ')  of the cylinder c~ - T x N into itself: 

y'=y+ef(x) (1) 

x' = x + y'  (mod 2n) (2) 

where f(x) is an odd trigonometric polynomial (therefore with vanishing 
mean value) and e a real parameter. Such maps generalize the so-called 
"standard map," where f(x) = sin x. 
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Given a number co such that cn/2~ is Diophantine, namely 

~ n + m  1 37,~>1 suchthat  Vn~7/\{O}, m~2:  ~ >~7]n[~ (3) 

KAM theory tells that, for [5[ small enough, there exists an invariant curve 
F=F~o(e)cc~, homotopically nontrivial (i.e., which winds around the 
cylinder), invariant under F~ [F=(Fo~)= F~o] and with rotation number co. 
By a theorem of Birkhoff, such curves are graphs of Lipschitz-continuous 
functions of x. 

Such "KAM curves" have very strong regularity properties. In par- 
ticular, for ]eL small enough, they are analytically conjugated to a rotation 
by co; moreover, they are smooth deformations, as e grows, of the trivial 
invariant curves [F~(0 )=  {(x, y ) e ~ :  y = c o } ]  obtained at ~=0.  

On the other hand, if 15[ is large enough, it can be shown (5) that no 
such curves exist at all. From now on, by "invariant curve" we shall mean 
a closed, homotopically nontrivial, invariant curve. 

For each co e (0, 2zr) we can define two "thresholds" in the following 
way. Let 

g(co) = {~ >10I 3Fo~(5), jointly analytic in T x [0, ~) } 

g'(co) = {5 ~> 0 [ 3Fo~(5), jointly continuous in T x [0, 5)} 

and 

ec(co) = sup g~(5) 

5'c(co) = sup g'j(5) 

It is believed that, for the standard map, 5c(~o)= 5'c(co), but no proof 
of this exists. The number 5c(co) is usually called the (analytic) breakdown 
threshold for the invariant curve Fo~. As a function of co, co(co) is quite 
irregular, being in general 0 for each co rational and nonzero for co 
Diophantine. 

The breakdown mechanism and, in general, the properties of invariant 
curves near the critical threshold co(co ) are far from being understood. 

Here we investigate numerically the regularity properties of the 
invariant curves and in particular their analytic structure. 

First of all, we note that the dynamics may be described in terms of 
the variable x e T only; in fact, y ' =  x ' - x  and therefore 

x , + l - - 2 x , + x ,  1 = ef(xn) (4) 
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where xn = F~(xo, Yo). Invariant curves may then be found by looking for 
a change of variables in which the dynamics reduces to a simple rotation 
by co: 

x = 0 + u(O)  (5) 
and 

0 , = 0 n  ~ + co =nco + 00 

where of course 1 + u'(O) > 0. It is simple to check that the invariant curve 
with rotation number co is given, in parametric form, by 

x = O + u ( O )  

y = co + u(O)  - u(O - co) 

and that the invariant curve shares the same regularity properties of u(O), 
by the implicit function theorem and the above-mentioned theorem of 
Birkhoff. 

The function u(O) (from now on called briefly "conjugating function") 
satisfies the following equation: 

O~u - u(O + co) - 2u(0) + u(O - co) = ef(O + u(O)) (6) 

This equation may be studied perturbatively by expanding u(O) in powers 
of e and, further, the Taylor coefficients of u(O) as Fourier series in 0: 

n ~ l  n = l  k e Z  

Actually, since in our case f ( x )  is always a trigonometric polynomial con- 
taining only sines, u(O) is odd and fi,,k e i~, ~in,-k = -fin, k, as is very easy 
to check. Moreover, each Taylor coefficient will be a trigonometric polyno- 
mial of order increasing with n. 

It is natural to study the analytic properties of u(O) by investigating 
the series (7). In particular, we are interested both in the analyticity in e at 
each fixed O, and the analyticity in 0 at fixed ~. In particular, a natural 
question which arises is to find the relation between the radius of 
convergence in the complex e plane of (7) at fixed 0 and the KAM 
breakdown threshold defined above. To be precise, let 

p(co) = inf (lim sup l un(0)l ~/')- 
0 e ~ -  n ~ o o  

be the radius of convergence, uniform in 0, of the series (7). Clearly p(co) ~< 
G(co), since within the radius of convergence of the series (7) there exists 

822/66/5-6-28 
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an analytic solution to Eq. (6). It is interesting to study the exact relation 
between these two "thresholds," as well as to understand the mechanism by 
which the series (7) ceases to converge as ]el grows and therefore u(O; e) 
loses analyticity in 5. 

A different but related question is the behavior of the same series 
expansion on the complex 0 plane at f ixed e within the radius of 
convergence. It is more convenient to pass to complexified dynamical 
variables as follows: 

Z : C ix 

~ = e iO 

P(z) = i f (x)  

With these notations, the maps we consider can be written as 

z .+tz , ,_ l  = e~p(~.) (8) 
2 

Z n 

where P(z)  is a rational function of z with a pole at the origin, such that 
the coefficients {c,} of its Laurent series at z = 0  are real and satisfy 
c_k = - c k ,  Co = 0. In particular, the unit circle in the complex z plane is 
invariant under this complex dynamics. 

Next, let ~b(~)= e i(~176 and 7 = ei~; then ~b conjugates multiplication 
by 7 (i.e., rotation by c~) on the ~ plane to the dynamics of our complexified 
map on the z plane. In particular, circles around the origin of radius close 
enough to 1 on the ~ plane are mapped conformally to analytic, closed 
invariant curves which wind around the unit circle, as a result of the 
analytic KAM theory. 

The series (7) can be written as a double Taylor-Laurent  series: 

• u.(O)e" 
n = l  

with 

u.(O)= Z " Hn, k ~  
k E Z  

and, for each fixed E < p(e)), the Laurent series in ~ will converge in an 
annulus: 

a - ' ( m ,  ~)< 1~[ < a(o~, g) (9) 
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the two radii being reciprocal for obvious symmetry reasons. We 
investigate the analytic structure of this series as well, and moreover we 
study the behavior of a(co, s) as e ~ p(co). Clearly, the annulus in the 
plane translates to a strip in the complexified 0 plane. 

2. THE MODELS 

We consider maps with 

f ( x ) =  ~ av sin vx 
v = l  

(10) 

where c#~ ~, qe  N, and we will take ~1 = 1. 
In particular, we analyze in detail the following two- or three- 

frequency maps: 
1 

f l (x)  = sin x + ~ sin 2x ( 11 ) 

1 
f2(x) = sin x + ~ sin 5x (12) 

1 1 
f3(x) = sin x + 3-0 sin 3x + ~ sin 5x (13) 

1 1 
f4(x) = sin x + ~ sin 2x + ~ sin 3x (14) 

Next, we choose a Diophantine (3) rotation number ~o. In order to fix the 
notation, let us introduce the continued-fraction expansion. For  any irra- 
tional number ~oe(0, 1) let { a k } k ~  be the sequence of integer numbers 
such that 

Symbolically, we write 

60 

2~ 
a l +  1 

az + - -  
a3 +.  

i x  2~ [al'a2'a3'"'] 

A trivial computation shows that the continued-fraction expansion of the 
golden ratio co/27r -- (x / -5 -  1)/2 is composed only by one: 

c~ = l- 1, 1, 1,...] = l- 1 ~ ] 
2re 
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In  a n a l o g y  to col; we shal l  c o n s i d e r  the  n u m b e r s  

~~ = [-2, 2, 2,...3 = [2  ~ ] 
2re 

a n d  

c~ = [3, 3, 3,...] = [ 3 ~ ]  
2~ 

Berretti  e t  al. 

( s o m e t i m e s  re fe r red  to  as silver a n d  bronze n u m b e r s ,  respect ive ly) .  Bes ides  
col, co 2, a n d  e) 3, we c o n s i d e r  a l so  noble n u m b e r s  (i.e., t hose  w h o s e  
c o n t i n u e d  f r ac t i on  is def in i te ly  one )  of  the  fo rm 

"~---~ = [-1, k, 1, 1,...] = 1-1, k, 1 ~ ] 
27z 

3. R E S U L T S  

F o r  al l  the  m a p s  c o n s i d e r e d  we f o u n d  n a t u r a l  b o u n d a r i e s  in the  
c o m p l e x  e p lane ,  as was  f o u n d  for  the  s t a n d a r d  m a p  in ref. 2. T h e  n a t u r a l  
b o u n d a r i e s  a p p e a r  to  be  c losed  curves ,  s y m m e t r i c  wi th  r e spec t  to  the  rea l  
axis  [ s ince  the  coeff ic ients  of  the  T a y l o r  series in (7) a re  r e a l ] ,  b u t  n o t  
circles.  

A s imple  s y m m e t r y  a r g u m e n t  shows  t ha t  when  the  F o u r i e r  e x p a n s i o n  

of  f ( x )  c o n t a i n s  on ly  o d d  f requencies ,  t hen  the n a t u r a l  b o u n d a r y  m u s t  be 

Table I. Radius of Convergence and 
Breakdown Threshold a 

fl(x), egj 0.8 1.2 1.2 
f2(x), ~o3 0.6 0.7 0.67 
f3(x), ~1 0.5 0.5 0.5 
f4(x), O91 0.7 0.9 0.9 
fl(x), CO l 0.75 1.1 1.13 
f2(x), ~1 0,45 0.6 0.64 

a Here fi is an estimate of the radius of convergence of the series 
(7) based on Pad6 approximants; gc is an estimate of the 
breakdown threshold based on Pad6 approximants; ~ is an 
estimate of the breakdown threshold based on Greene's method. 
The maps fl,..., f4 are defined in Eqs. (11 )-(14) and the notation 
for the rotation numbers is the same as in Section 2. 
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symmetric with respect to the imaginary e axis (cf. Figs. 2 and 3): in fact, 
if f (x)  contains only odd frequencies, P(z) is an odd function and (8) is 
invariant under the transformation z~-+-z ,  e~--~-e. This symmetry 
property implies the observed symmetry in the distribution of the 
singularities of u. 

The intersection of the natural boundary with the positive real axis in 
the complex e plane coincides with the threshold found by Greene's 
method, within numerical errors (see Table I; a review of Greene's method 
is presented in Appendix A). It is interesting to note that, since for some 
maps the natural boundary appears to elongate in the direction of the real 
axis (see Table I and Fig. 2, which shows the natural boundary for, e.g., 
the invariant curve with rotation number co3 of the map with nonlinear 
term f2), it follows that for those maps the radius of convergence p(c0) of 
the series (7) is strictly less than the breakdown threshold e,(co). 

We note also that for all the maps of the type we considered (including 
those for which we do not show the singularities of Pad6 approximants, for 

' I . . . .  I . . . .  I 

K<x x x'<x xx xx x 
:>fx: 

x 

x • 

x • 

x% • 

~ • Xxx xx xx x 

, + , , n , , , , n + , , , i , , , ,  
-2 

-2 +1 0 1 2 

Fig. 1. Poles  of the Pad6 a p p r o x i m a n t s  [70 /70 ]  in s for the m a p  wi th  f ( x ) =  

sin x + 1/20 sin 2x, ro ta t ion  n u m b e r  co I , 0 = 1. 
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brevity), for all Diophantine rotation numbers of the above-mentioned 
type, a natural boundary in the complex e plane was found. Some natural 
questions therefore arise: are there maps with a sufficiently regular 
nonlinear term f such that a different behavior occurs? How "universal" 
are natural boundaries in perturbation expansions for invariant tori of 
Hamiltonian systems? What is the relation between the shape of the 
natural boundaries, the frequencies in the Fourier expansion of f, and the 
continued-fraction expansion of co? If, indeed, we face a universal 
feature--at least within the class of maps considered--it should be possible 
to understand it in a "renormalization group" framework of the type 
devised in ref. 6. 

In the complex ~ plane, all the maps we considered have natural 
boundaries on the annulus of convergence of the Laurent series (9). A 
similar natural boundary was found, with very different techniques, by 
Greene and Percival (7/for the standard map and for the semistandard map. 
We show the same boundary directly by showing the singularities of Pad6 

Fig. 2. 

1.0 

0.5 

0.0 

-0.5 

-1.0 

I J . . . .  I . . . .  I . . . .  I . . . .  I I 

X x X X ::'~xXxX'XXxX~ >'r X 

X 
X X 

X X 
X 

X X 
X X 

X X 

X X 
X X 
X 
X X 
X X 

X 

X x  X X R<xX>o<xXxX.,<:xX x 

, I  , , , , 1 , , , , I , , , , I , , , , I ,  
-1 -0.5 0 0,5 1 

Poles of the Pad~ approximant [70/70]  in E for the map with f ( x ) =  
sin x + 1/50 sin 5x, rotation number e)3, 0 = 1. 
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approximants of higher order in the complex ~ plane. Moreover, the same 
phenomena occur for all the other maps considered, remarkably always 
with boundaries of annular shape--quite differently than the case of 
boundaries on the complex e plane, where the shape depends on f and 
o n  co. 

We also measured the external radius of the annululs e(co, e) and 
determined numerically its dependence on ~. In the case of the semi- 
standard map [i.e., the case f ( x )  = eiX], since the order n in e of the expan- 
sion (7) contains only the frequency k = n, the expansion can be considered 
one in the variable ~e i~ = e~; it follows that a(co, e) tends to 0 linearly as e 
tends to the radius of convergence of the series. In the case of the standard 
map and of the other, more complex maps considered in this paper, this 
argument of course does not work, but it is remarkable to note that the 
width of the analyticity region in the ~ plane still appears to tend linearly 
to 0 [and ~r(co, e) to 1] as e--*~c(~O). 

0.5 

1,0 

0.0 

-0.5 

-I .0 

I .... I .... i .... I .... I'- 

x 
x x 

x 

x x x x 

# • 

xx x • 
x 

x • 
X 

m 

-1 -0.5 0 0.5 1 

Fig. 3. Poles of the Pad6 approximant [70/70] in e for the map with f ( x ) =  
sin x + 1/30 sin 3x + 1/50 sin 5x, rotation number c91, 0 = 1. 
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Again, this phenomenology seems to be "universal" among the maps 
considered here. It is rather easy, though, to write a counterexample in 
which no natural boundary appears for a given invariant curve at a given 
e; in particular, we can exhibit a map of the type (1), (2) which has an 
invariant curve, say with rotation number equal to the golden mean, such 
that its conjugating function is an entire function of 0 for, e.g., e = 1/2. In 
fact, let 

~O j l (O  ' 1 )  = } sin 0 

and let w(x) be the inverse function of 0 + 1/2 sin 0; then, since for all co 
Diophantine, e, and 0 Eq. (6) must be satisfied, a simple calculation shows 
that if we take 

f (x)  = 2[cos  ~z(xf5-  1 ) -  1] sin w(x) 

then (6) will have 1/2 sin 0 as solution for co = co~ and e = 1/2. 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I 

x x 

X X 
xx  x 

x 
x 

x xx  

x 

x 
Xx x x 

x 
x 
Xx  x 

x x 

X X 

, , , , I , , , , I , , , , I , , , , I , , , , I  -1.5 
-1.5 -1 -0.5 0 0.5 1 

I I I 
t ,5  

Fig. 4. Poles of the Pad+ approximant [70/70]  in e for the map with f(x)=sinx+ 
1/20 sin 2x + 1/30 sin 3x, rotation number ml, 0 = 1. 
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Besides the examples considered in this paper, we studied a large 
variety of mappings of the type given by Eqs. (1), (2), and (10) with 
rotation numbers of the type mentioned in Section 2. The results (not 
presented here, for brevity) show a phenomenology similar to the cases 
studied here. We just mention some of them in Table I, where the radius 
of convergence and the breakdown threshold as determined by the Pad6 
approximant method and the breakdown threshold as determined with 
Greene's method are reported. 

We give selected figures showing the shapes of the natural boundary 
in the complex e plane (Figs. 1-4) and in the complex ~ plane (Figs. 5-7). 

Finally, in Figs. 8 and 9 we show how ~(co, e) tends to 1 linearly as 
--, p ( ~ ) .  

A P P E N D I X A .  GREEN'S METHOD 

The most reliable numerical method to determine the breakdown of 
invariant curves is the one developed by Greene. (8) The results provided by 

-2 
-2 

. . . .  I . . . .  I . . . .  I . . . .  

X X  X XX X 
X X X  

X X X 
X 

2< • 

x • x 
x 

x x 
x 

• x 
X 

• 
x x 

x 
x • 

x 
x x 

x 

x x xx 
x 

x 
x x x 

x x x  
x x  X XX X 

-1 0 1 

Fig. 5. Poles of the Pad6 approximant [80/80]  in ~ for the standard map, s = 0.7. 
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this method will form the basis of comparison and interpretation of ours. 
In this perspective we consider it worthwhile to dedicate a few words to a 
review of the method. 

Greene's starting point is the conjecture that the breakdown of an 
invariant curve is related to a transition from stability to instability of  the 
periodic orbits approaching the invariant curve. More precisely, for any 
irrational co, let {Pk/qk}k~ z be the sequence of rational approximants to co 
such that Pk/qk-'* CO as k ~ oe. Let us denote by ~(Pk/qk) a periodic orbit 
with frequency P~/qk. The critical breakdown threshold is found as the 
value of e at which the periodic orbits N(Pk/qk) are alternatively stable or 
unstable. To determine the stability of N(Pk/qk), we compute the Floquet 
multipliers of the linearized map. In particular, the tangent space orbit 
(by,,, 6xn) at the point (y , ,  x , )  is defined in terms of the initial conditions 
(6yo, (SXo) through a matrix A as 

I- Y~ 
6x,J = A L & o J  

-2 
-2 

2 i I L 
' ' I . . . .  I . . . .  I ' ' ' 

X X X  X X X  X x X 

X x X X - -  

X X 
X X 

X X 
X 

X X 
X 

X X 
X X 

X x X 

x 

Xx x 
x x x x 

X X X  x X X  X X X  

t I I I I I I I I [ I I I I I l I I I 

-1 0 1 2 

Fig. 6. Poles  of  the Pad6 approximant  [80 /80 ]  in ff for the standard map,  e = 0.8. 
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1 - -  

. . . .  I . . . .  I . . . .  I . . . .  

x~ xxX xx XXXxx 

x x x 
x Xx 

x 

x • 
x 

x • 
x x 
• • 

x 
x x x 

Xx xxX 
X)~X X X  X XX  _ X X X 

-2 
-2 -1 0 1 2 

Fig. 7. Po les  of the Pad6 a p p r o x i m a n t  [80 /80 ]  in ( for the s t anda rd  map ,  ~ = 0.9. 
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1 1 0  I ' -~ ' ~ ' ' 

1.08 

1.06 

Fig. 9. 

1.04 

i f  t , , ,  ~ 1 , ,  

X 

, I . . . .  I . . . .  I , , 

0.5 0.52 0.54 0.56 

er(~o, e) vs. e for the map with f (x)  = sin x + 1/50 sin 5x, rotation number o21. 

where, in our  case, the matrix 
is given by 

A associated to the periodic orbit  ~(pg /qg)  

q, 1 --e  ~ ctvv cos vx i 
--'[ v~l  A = 

i = t  - -g Z ~vV COS VX i 
v--I 

The Floquet multipliers of the linearization are the eigenvalues 2t,z of 
the matrix A. Since the map is area-preserving, such eigenvalues depend 
only on the trace of A. More  precisely, if we set 

R = ~ [2  - Trace (A)]  

(called by Greene the residue of the periodic orbit), the eigenvalues 21,2 of 
A are given by the expression 

21,2 = 1 - 2R +_ 2 [ R ( R  - 1)] 1/2 

When 0 < R < 1 the periodic orbit  is stable, since the eigenvalues are 
complex with modulus  1. On  the other hand, the orbit  is unstable when 
R < 0 o r  R > I .  

Therefore once a periodic orbit  is found, the calculation of the residue 
R determines its stability. The breakdown threshold of an invariant curve 
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(with rotation number co) is then defined as the value of e at which 
the periodic orbits ~(Pk/q~) (with frequencies equal to the rational 
approximants to co) are alternatively stable and unstable. 

Numerically, the most delicate point is certainly the determination of 
the periodic orbits. By definition of a periodic orbit, to find ~(Pk/q~), one 
has to find a point (xo, Yo) which is equal to the q~th iterate of the 
mapping (x o = Xqk, Yo = Yqk)' with the further constraint that ~qk i =  1 Y i  = Pk" 
Here (Xq~, yq~) a r e  obtained by the recursive relations 

Y . + t = Y n + e  ~ ~vsinvxn 

X n +  1 = X n - l -  y n +  1 

Notice that since (by definition) qk -* oe as k --. o% the determination 
of ~(Pk/q~) may require a substantial amount of CPU time for large k. 

To ease this problem, Greene observed (see Appendix A of ref. 8), 
using the symmetry of the map, that the initial point of the periodic orbit 
belongs to the lines xo = yo/2, yo/2 + ~, or x o = 0, 7z. In fact, the map can 
be written as a product of two involutions: 

F~ = 1112 

with I~ = I~ = 1; it is then possible to show (8) that if (Xo, Yo) is a fixed 
point of I~ (or I2) and F~(xo, Yo) is also a fixed point for some N e  N, then 
the orbit with initial point (Xo, Yo) is periodic with period 2N. 

A simple calculation shows that I1 and /2  are given by 

t 
Xn ~ --Xtt 1 

y n = y n _ ~ + e  ~ ~ s i n v x .  

and 

~Xn+ t ~ --Xn + Yn 
I2 

Y~ = Yn 

The fixed points of I1 are at x-= 0 and x = ~z, while those of I2 are at 
x = y/2 or x = y/2 + re. 

A P P E N D I X  B. C A L C U L A T I O N  OF P A D I ~ A P P R O X I M A N T S  

Given a formal Taylor series 

anzn  
n = 0  

(81) 
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its Pad6 approximants are the rational approximants, traditionally denoted 
by [M, N], defined in the following way: 

PM(z) 
[M, N] - 

Q~v(Z) 

whereP~/(z), QN(Z) are polynomials of degree M, N, respectively, such that 
the Taylor expansion of their quotient agrees up to order M + N with the 
series (B1). QN(Z) is usually normalized by the condition QN(O)= l. In the 
Pad6 approximants [M/N] there are therefore M +  N +  1 indeterminate 
coefficients as in any polynomial of degree M + N. These coefficients can be 
formally determined from first M + N +  1 terms of (B1). To minimize 
roundoff errors, the Pad6 approximants are computed recursively with the 
following formulas: 

P2j(x)/Q2j(x) = I N - j / j ]  

Pzj+ ~(x)/Q2j+ l(x) = I N - j -  l/j] 

and 

P2j(x) (/52j 1P2j-z(X)--xP2j-zPzj-I(x))/P2j 1 

Q2i(x) (P21-1Qzj 2(x)-xP2j_zQzj_l(x)) /P2j_l  

P2j+l(X) (P2jP2j l (X)-P2j_lP2j(x)) / (P2j-P2j  1) 

Qzj+6x) (P2jQ2j l ( x ) - P z j  1Qzj(X))/(Pzj-Pzj 1) 

where/sj is the coefficient of the highest power in Pj(x), and the recursion 
is initialized by setting Po(x) and Pl(x) to the N and N -  1 Taylor polyno- 
mials respectively: 

N 

Po(x) = ~, akx k, Qo(x) = 1 
k = 0  

N - - 1  

PI(X)= ~ akx k, Q l ( x ) = l  
k = O  

For a complete reference see ref. 9. 
To identify a natural boundary, we compute "diagonal" Pad6 

approximants [N/N] (considered to be the most accurate) for increasing N 
and look at how the poles of the approximants behave: in the presence of 
a natural boundary, they will cluster on the boundary curve as N grows. 
For a reliable identification it is necessary in our case to compute Pad6 
approximants up to high orders, say [70/70] or [80/80]. 
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It is common to have, besides "genuine" poles and zeros, also fake 
pole-zero pairs which cancel (a so-called "ghost"). It is possible to 
distinguish them from a genuine pole and a genuine zero nearby (a situa- 
tion very frequent when dealing with natural boundaries, essential 
singularities, and accumulation points of singularities) because ghosts 
disappear as any parameter in the series is slightly varied, or the order of 
the approximants changes. Moreover, the distance between the pole and 
the zero in a ghost is always close to machine precision, and in any case 
several orders of magnitude smaller than the distance in a genuine 
pole-zero pair. A semiautomatic filtering mechanism can therefore be used. 
Finally, we remark that since the series we consider have an almost lacunar 
nature, as N increases, ghosts tend to appear and disappear with a certain 
regularity as peaks are crossed. 

A P P E N D I X C .  C A L C U L A T I O N  OF THE P E R T U R B A T I O N  
E X P A N S I O N  

The coefficients of the perturbative expansion (7) are computed with 
the following formulas, valid when f ( x )  is given by (10): 

b(o~')(O) = e i'O for v = 1,..., f 

Un(O ) = D2 2 Im c~vb~ v) i for n ~> 1 
v 1 

b~v~(O ) = iv ~ lu,(O) b~V~,(O) for n ~> 1 
F / l =  1 

Next we expand in Fourier series u and the b's; first we note that since 
u(O) is real and odd in 0, fi~ is purely imaginary and odd in k, so we set 
~n,x = ifi,,k, with t~n, ~ ~ ~. We obtain 

/ ;~  -6v,  k (C1) 0 , k - -  

1 
(c2) 

2Do,,k ~= 1 
hmax 

~(~) _ _v ~ '~ f'(~) ( C 3 )  
~ n , k - - F l  l =  1 h~hmin tJl, h C ' n - - l , k  h 

with n~>l; in (C2), l<~k<~n,  while in (C1) and (C3), - ~ n < ~ k ~ v n ;  
moreover, hmin = -min( / ,  (n - l) - k), hmax = min(/, (n - l) + k), and/~o.k = 
2(cos kco - 1 ). 
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A C K N O W L E D G M E N T S  

All computations have been performed on several VAX/VMS com- 
puter systems at the Dipartimento di Matematica, II Universitfi di Roma 
(Tor Vergata), Facolt~ di Scienze, Universit~i dell'Aquila, and Institute of 
Scientific Interchange, Torino. We are grateful to R. De La Llave and 
G. Gallavotti for very helpful suggestions and encouragement. A.B. and 
A.C. wish to express gratitude to Profs. M. Rasetti, R. Livi, and S. Ruffo 
for their invitations at the workshops "Complexity and Evolution" at the 
Institute of Scientific Interchange, Torino, where part of this work was 
done, and for many helpful discussions. 
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